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Abstract.  We consider the influence of the number of quantum dots 
on spaser operation. It is shown that even in the presence of only 
two quantum dots, the spaser behaviour is qualitatively different 
from that of the previously studied spaser consisting of a nanopar-
ticle and a single quantum dot. In particular, for nonzero detuning 
of resonant frequencies of a nanoparticle and quantum dots, an 
increase in the interaction constant between quantum dots first 
leads to a decrease in the spasing threshold and then to its growth 
and even the spasing breakdown. 
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1. Introduction 

The use of active (gain) media to compensate for losses in arti-
ficial plasmonic metamaterials is currently of considerable 
interest [1 – 4]. Application of metamaterials usually assumes 
that the working range is a narrow region near the plasmon 
resonance of particles of which this metamaterial is made. 
Actually, this fact explains high losses. To compensate for 
these losses, Sarychev and Tartakovsky [2] proposed to intro-
duce active inclusions into the matrix. When an active medium 
is embedded into a metamaterial at frequencies of the plas-
mon resonance, particles surrounded by this active medium 
turn into spasers [2 – 5]. Schematically [5  – 11], a spaser is a 
system of inversely excited two-level quantum dots (QDs) sur-
rounding plasmonic nanoparticles (NPs). The principle of 
spaser operation is similar to that of a laser. Surface plasmons 

(SPs) localised on a NP [5, 9 – 11], which is a multimode reso-
nator, play the role of photons. In other words, the spaser 
works as a near-field generator and amplifier of NPs (plas-
mons). NP amplification occurs due to nonradiative energy 
transfer from a QD to a NP. Since the probability of nonra-
diative excitation of a plasmon is (kr)–3 times greater than the 
probability of radiative de-excitation of a photon [12] (r is the 
distance between QD and NP centres, k = 2p/l), the interac-
tion of a QD with a plasmonic NP can be described in the 
dipole – dipole approximation (or any other near-field 
approximation [13]). 

Excitation of plasmon modes on a NP by near fields of a 
QD can lead to further stimulated emission of a QD, sur-
rounding this NP, in the same plasmon mode and, finally, to 
the development of plasmon generation, i.e., to the appear-
ance of a spaser. Previously, the authors of papers [5, 8, 14, 15] 
considered a system consisting of a NP and a QD. However, 
a single-quantum-dot spaser scheme is far from possible 
experimental realisation. Thus, in the experiment from paper 
[6], the number of atoms of the active medium is significantly 
greater than unity. Note that the behaviour of the spaser con-
taining a large number of QDs [16, 17] is qualitatively differ-
ent from the simple model of a spaser consisting of a NP and 
a QD [5, 8, 14, 15]. Below we consider collective phenomena 
in the simplest spaser model containing two QDs. 

2. Statement of the problem, basic equations 

Consider the interaction of a NP with two two-level QDs in 
the simplest case when QDs are pumped so that their dipole 
moments have the same directions (Fig. 1). In this case, the 
Hamiltonian of the system can be written as 

H a a a a1 2 1NP TLS TLS R1 1 2 2 1 1' ' ' 'w w s s w s s s sW= + + + +
@ @ @ @ @t t t t t t t t t t t^ h

	 + a a2R 2 2 3 1 2 1 2' 's s s s s sW W+ + +
@ @ @ @t t t t t t t t^ ^h h.	 (1)

Here, wNP, wTLS1, wTLS2 are the frequencies of a SP and two 
QDs, respectively; and WR1, WR2, W3 are the Rabi frequencies 
characterising the interaction of two QDs and NPs, as well as 
QDs with each other, respectively. The operators at and a @t  
describe the SP creation and annihilation ( , 1a a =

@t t6 @ ), and the 
operators , , ,1 1 2 2s s s s@ @t t t t  – the transition between the ground 
and excited levels of the first and second QD, respectively; in 
this case, , D1 1 1s s =

@t t t6 @  and , D2 2 2s s =
@t t t6 @ , where ,D D1 2t t  are the 

population inversions in quantum dots. Note that the more 
general case of a four-level system does not lead to a qualita-
tively new behaviour of the system [18]. 

For dissipation to be consistently taken into account, we 
should bear in mind that a spaser is an open quantum system 
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[19]. To this end, we should introduce into consideration the 
spaser environment with which NPs and QDs interact [20 – 22]. 
Without loss of generality, we can assume that these are the 
reservoirs, representing a continuum of boson field modes in 
interactions with which NPs and QDs relax. Depending on 
the dominant relaxation mechanism [23] such bosons can be 
phonons, polaritons, surface plasmons, etc. [24]. Then, under 
the assumption that the correlation time of the variables of 
the reservoir is much smaller than the characteristic time of 
change in the system (Markov approximation), the Heisenberg 
equations of motion for the slowly varying amplitudes and 
operators, 2, , , ,a D D1 1 1s st t tt t  can be written in the form: 

i i ia a1
R R

a
1 1 2 2t s sD W W= - - -to t t tb l ,

i i iaD D1
1R1 1

1
1 1 3 2 1s d t s sW W= - + +

s
to t t t t tb l ,

2 2i iD a a D D
1

R
D

1 1 1 1 3 2 1 1 2
1 01s s s s s s tW W= - + - -
-@ @ @ @to t t t t t t t t

t t
^ ^h h ,	 (2)

i i iaD D1
2R2 2

2
2 2 3 1 2s d t s sW W= - + +

s
to t t t t tb l ,

2 2i iD a a D D
2

R
D

2 2 2 2 3 1 2 2 1
2 02s s s s s s tW W= - + - -
-@ @ @ @to t t t t t t t t

t t
^ ^h h .

Here, d1 = wS – wTLS1; d2 = wS – wTLS2; D = wS – wNP; wS is the 
oscillation frequency, which will be determined below; D01t  
and D02t  determine the pump in the first and second QDs, 
respectively; and tD1 and tD2 determine the pump rate. The 
terms containing the relaxation times ta (NP) and ts1, ts2 
(first and second QDs) are obtained, as we have already 
pointed out, in the Markov approximation (see, for example, 
[21, 22]).

Below, we make the following simplifying assumptions. 
First, we assume that QDs are similar and, therefore, wTLS1 = 
wTLS2, d1 = d2, ts1 = ts2, tD1 = tD2, D01 = D02.

Second, we assume that both QDs are located at the same 
distance from the NP and, therefore, WR1 = WR2 = WR.

Taking the above into account, system (2) takes the form: 

i i ia a1
R R

a
1 2t s sD W W= - - -to t t tb l ,

i i iaD D1
R1 1 1 3 2 1s d t s sW W= - + +

s
to t t t t tb l ,

2 2i iD a a D D
R

D
1 1 1 3 2 1 1 2

1 0s s s s s s tW W= - + - -
-@ @ @ @to t t t t t t t t

t t
^ ^h h ,	 (3)

i i iaD D1
R2 2 2 3 1 2s d t s sW W= - + +

s
to t t t t tb l ,

2 2i iD a a D D
R

D
2 2 2 3 1 2 2 1

2 0s s s s s s tW W= - + - -
-@ @ @ @to t t t t t t t t

t t
^ ^h h .

3. Steady-state solution, generation conditions 

Let us find the steady-state solution to system (3). To do this, 
we set the time derivatives equal to zero. As a result, the sys-
tem takes the form 

0i i ia1
R R

a
1 2t s sD W W- - - =t t tb l ,

0i i iaD D1
R1 1 3 2 1d t s sW W- + + =

s
t t t t tb l ,

2 2 0i ia a D D
R

D
1 1 3 2 1 1 2

1 0s s s s s s tW W- + - -
-

=
@ @ @ @t t t t t t t t

t t
^ ^h h ,	 (4)

0i i iaD D1
R2 2 3 1 2d t s sW W- + + =

s
t t t t tb l ,

2 2 0i ia a D D
R

D
2 2 2 3 1 2 2 1

2 0s s s s s s tW W- + - -
-

=
@ @ @ @t t t t t t t t

t t
^ ^h h .

Adding the second and fourth, as well as the third and fifth 
equations of system (4), we obtain 

0i i ia D D D D1
R1 2 1 2 3 2 1 1 2d t s s s sW W- + + + + + =

s
t t t t t t t t tb ] ^ ^l g h h ,

2 0i a a D D D2
R

D
1 2 1 2

1 2 0s s s s tW + - + -
+ -

=
@ @ @t t t t t t

t t t
] ^ ^

g h h6 @ .	

(5)

Now we will use the equalities ,D D1 1 1 2 2 2s s s s= =t tt t t t and 
transform the first equation (5) to the form 

i i a D D1
R1 2 1 2d t s s W- + + +

s
t t t t tb ] ^l g h

	 + [ ] 0i D D3 2 1 1 2 2 1s s s sW + + - + =t t t t t t] ^ ]g h g .	 (6)

As a result, we obtain the system of equations determining 
the steady-state solution: 

0i ia1
R

a
1 2t s sD W- - + =t t tb ]l g ,

2i a a D D D2 0R
D

1 2 1 2
1 2 0s s s s tW + - + -
+ -

=
@ @ @t t t t t t

t t t
] ^ ^

g h h6 @ ,

NP 

QD QD

WR WR

W3

Figure 1.  Geometry of the problem. Arrows indicate the directions of 
the dipole moments.
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i i a D D1
R1 2 1 2d t s s W- + + +

s
t t t t tb ] ^l g h

	 + 0i D D3 2 1 1 2 2 1s s s sW + + - + =t t t t t t] ^ ]g h g6 @ .	

(7)

One can see that system (4) has been reduced from five equa-
tions to a system of three equations (7), depending on the 
variables , иa D D1 2 1 2s s+ +t t t t t] ^g h.

We now turn to the corresponding c-number equations, as 
is usually done in the study of the dynamics of lasers 
[8, 14, 21, 25]. System (7) takes the form 

0i ia1
R

a
1 2t s sD W- - + =b ]l g ,

2i a a D D D2* *
R

D
1 2 1 2

1 2 0s s s s tW + - + -
+ -] ] ]g g g6 @  = 0,

i i a D D1
R1 2 1 2d t s s W- + + +

s
b ] ]l g g

	 + 0i D D3 2 1 1 2 2 1s s s sW + + - + =] ] ]g g g6 @ .	

(8)

The first equation of system (8) determines the steady-
state value of the dipole moment of the NP, the second – the 
common dipole moment of two QDs, and the third – the 
steady-state value of the total inversion in the QD. It is worth 
emphasising that the reduction of five operator equations (4) 
to a system of three equations (8) for c-numbers is not a trivial 
replacement of operators by c-numbers, because in system (7) 
unknown are collective operators 1 2s s+t t  and D D1 2+t t . This 
transition involves the use of operator equalities 

andD D1 1 1 2 2 2s s s s= =t t t t t t , which is invalid in c-numbers. Thus, 
although the operator system (4) is equivalent to the operator 
system (8), c-number systems are not equivalent. The transi-
tion to c-numbers in (4) means decoupling of all its correla-
tors; however, the transition to c-numbers in system (8) allows 
one to avoid the ‘decoupling’ procedure of the majority of 
them, by making a controlled process out of this procedure, 
because system (8) is equivalent to the system of a single-
quantum-dot spaser (accuracy of the transition to c-numbers 
is investigated in detail in [19, 26]). 

Before examining the general case, we note that if QDs do 
not interact with each other (W3 = 0), the mathematical sys-
tem (8) is almost equivalent to the problem of finding the 
steady-state solutions in a system with a single QD and NP 
(see [2, 5, 8, 14]), with the only difference that now 2D0 instead 
of D0 is used in the equations.

Next, we introduce the notations ( 1/ )ia atW D=- - , Ws =  
( 1/ )id t- - s . We find an expression for a from the first equa-

tion (8): 

ia R

a

1 2s s
W

W
=

- +] g ,	 (9)

and then substitute it into the second equation:

2i i i
*

* *

R
R R

a a

1 2 1 2 1 2 1 2s s s s s s s sW
W

W
W

W+ +
+

+ +] ] ] ]g g g g= G

	 – D D D2 0
D

1 2 0
t

+ -
=

] g .	 (10)

Then, 

2 2D D D1 1
*R D

a a
1 2

2
1 2

2
0t s sW

W W
+ =- + + +c m .	 (11)

Substituting (11) and (9) into the third equation of system (8) 
we obtain 

( ) i i D2 1 1 2*R
R

R
a

D
a a

1 2
2

1 2
2

0s s t s sW
W
W W

W W
+

-
- + + +c m; E'

+ 0i D2 1 1 2 1*R D
a a

3
2

1 2
2

0t s sW W
W W

W- + + + - - =sc m; E1 .

		  (12)

For equation (12), there are two types of solutions. Firstly, it 
is a trivial solution (in the absence of spasing) when s1 + s2 = 
0, a = 0, D1 + D2 = 2D0. However, there is also a nontrivial 
solution, determined from equality of the expression in the 
curly brackets to zero, from which one can find 

/ /
( ) ( / )i iD
2 1 1

2
*

R

R

a a D

a
1 2

2
2

0 3
2

3
1

s s
tW W W

W W W W W
+ =

+

- + +s
-

^ h
.	 (13)

One can see that the left-hand side of (13) is a positive real 
number. Therefore, from the condition of equality of the 
imaginary part of the expression on the right-hand side of (13) 
to zero, we obtain the equation for the oscillation frequency, 
which, generally speaking, can have several solutions. 

Thus, the equation for the oscillation frequency is given by 

0R R R

a a a

3 2
2 2

3
2

2
3

t t t d t t t
W D W D W W W W

- - - + - =
s s s

.	 (14)

Note that the characteristic experimental values of the damp-
ing constants ta ~ 10–14 s, ts ~ 10–11 s and interaction frequen-
cies WR ~ 1012 s–1, W3 ~ 1011 s–1 satisfy the condition 
, R a
1

3
1

% %t tW Ws
- - . In this approximation, we obtain the solu-
tion to equation (14): 

1 1
S NP

R a
3 2w w

t t
W

W
= + -

s
c m.	 (15)

In this case, the second root of equation (14) can be estimated 
as /S NP R a2

2
3.w w t tW W- s . The quantity wS2 ~ 1016 s–1 and it 

is not related to the region of approximations used in the 
paper. The positivity condition of expression (13)

2
/

Re
i

iD
R a

0 2
3

3H
W W W

W W
+

+sd n	 (16)

determines the lasing threshold (per one QD): 

/ i
iD

2
1

2
1

th
R a
2

3

3

W W W
W W

=
+

+
=s ´	

(17)

tW+

( / )

( ) ( ) / /
.

R

R

a

a a a

2
3

2
3

2

1
3

2
3 3

1
3

t

t t d d t t

W W D W

D W W W D W D

+ +

+ - + - -s s
- -

^

] ^

h

g h6 6@ @

Note that, unlike the case of a single QD, the lasing 
threshold Dth in the presence of two QDs increases with 
increasing interaction constant between them (Fig. 2). This is 
due to the fact that when QDs interact with each other, their 
levels split, resulting in a detuning between the QD transition 
frequencies and NP-enhanced plasmon resonance frequency, 
which leads to an increase in the lasing threshold. 
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Thus, with increasing interaction constant between the 
QDs, the pump threshold increases. Consider the case when 
lasing is observed at W3 = 0, i.e., D0 > Dth(0). By increasing the 
interaction constants W3, as has been stated above, the lasing 
threshold will increase and eventually exceed D0, resulting in 
suppression of lasing of the NP dipole moment (Fig. 3). 

If there is a detuning between the NP and QD frequencies, 
the interaction between the quantum dots can lead to a 
decrease in the lasing threshold (Fig. 4). This is due to the fact 
that when QDs interact with each other, there occurs level 
splitting and an effective change in the QD transition frequen-
cies, which can make the detuning between the NP and QD 
frequencies equal to zero. This leads to the minimisation of 
the lasing threshold at a certain interaction constant between 
the QDs. With a further increase in the interaction between 
the QDs the pump threshold increases (see Fig. 4). The depen-
dence of the NP dipole moment on the interaction constants 
W3 in the case of a detuning between the NP and QD frequen-
cies is shown in Fig. 5. One can see that at a certain optimal 
interaction a maximum value of the dipole moment is reached, 
which corresponds to a minimum threshold value in Fig. 4. If 
the pump level is less than the threshold, lasing is suppressed 
and the NP dipole moment vanishes. 

Note that the change in the interaction constant W3 
between the QDs inevitably leads to a change in the interac-
tion constant WR between the NP and QD. However, since 

иr r r
/

TLS TLS R TLS TLS NP TLS3
3 2 2 3 2

+ +W W +-
-

- -
-^ h ,

where rTLS – TLS is the distance between the QDs and rNP – TLS is 
the distance between the NP and the middle line connecting 
QDs, changing rTLS – TLS greatly affects W3 and weakly WR. 
Therefore, the change in the interaction constant between the 
QD and NP is neglected in this work. 

It should be noted that in the near-field region the thermal 
losses in the nanoparticle substantially increase. Indeed, as 
shown in [27], the thermal effects play a significant role in the 
spaser dynamics. However, when using repetitively pulsed 
pumping and pulse duration of 10– 9 s, a hundred plasmons 
can exist in a nanoparticle, which is one-to-two orders of 
magnitude larger than the number of plasmons we consider. 
Also it is worth noting that pumping can be performed by 
quantum wires which work in the ballistic rather than the dif-
fusion regime [28]. In this situation, the pump rate can be 
quite large at small currents. 

4. Conclusions 

We have shown that the presence of two quantum dots can 
lead both to an increase and a decrease in the lasing threshold 
Dth. A decisive role is played by the interaction constant W3 
between the QDs. At a zero detuning (wNP = wTLS) the inter-
action between the QDs always leads to an increase in the 
lasing threshold. There exists a critical value of the interaction 
constant, at which lasing is suppressed, i.e., a single-quantum-
dot spaser scheme may be preferable to a scheme with two 
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Figure 2.  Dependence of the pump threshold Dth (in appropriate units 
for a single-quantum-dot spaser, Dth1) on the interaction constant W3 
between the QDs. 
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Figure 3.  Dependence of the dipole moment of the nanoparticles a on 
the interaction constant W3 between the QDs.
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Figure 4.  Dependence of the pump threshold Dth (in appropriate units 
for a single-quantum-dot spaser, Dth1) on W3 at a frequency detuning 
between the nanoparticles and quantum dots, D = 3 ́  1013 s–1.
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Figure 5.  Dependence of the dipole moment of the nanoparticles a on 
W3 at D = 3 ́  1013 s–1.
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QDs. However, if there is a detuning between the QD transi-
tion frequency and the NP-enhanced plasmon resonance fre-
quency, then by changing the interaction between the QDs 
one can reduce the lasing threshold and increase the steady-
state value of the dipole moment. 

Thus, the allowance for the collective interaction is impor-
tant in calculating the spaser dynamics. Particular attention 
should be paid to the interaction of the elements of the active 
medium, which can be varied by changing the distance 
between the elements. 
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