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Resonant tunneling of electromagnetic waves through polariton gaps
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We consider resonance tunneling of electromagnetic waves through an optical barrier formed by a stop band
between lower and upper polariton branches. We show that the tunneling through this kind of barrier is
qualitatively different from tunneling through other optical barriers as well as from the quantum-mechanical
tunneling through a rectangular barrier. We find that the width of the resonance maximum of the transmission
coefficient tends sharply to zero as the frequency approaches the lower boundary of the stop band. Resonance
transmission peaks give rise to new photonic bands inside the polariton stop band in a periodic array of the
barriers.[S1063-651X98)13306-9

PACS numbe(s): 42.25.Bs, 05.46:j, 71.36+c, 63.50+x

[. INTRODUCTION radiation through a polariton barrier in a steady-state mode.
The point of interest in this situation is the resonance tunnel-
The effect of tunneling is well studied in the context of ing through a two-barrier system. Resonance tunneling of
guantum mechanictsee, for example, Refl]). Recently, electromagnetic waves in a superlattice structure was previ-
tunneling of electromagnetic waves has attracted interest owsusly discussed in Ref10]. A tunneling effect in Ref[10]
ing to experiments with evanescent electromagnetic wavearose when the angle of incidence for electromagnetic waves
[2-5], which are a direct analog of wave functions of tun- exceeded the angle of total internal reflection for one of the
neling quantum particles. These experiments provide an opayers constituting the superlattice. The frequency depen-
portunity to experimentally study the time evolution of tun- dence of the imaginary wave number in this case coincides
neling wave packets, a subject of long-standing controversyith that of the square-barrier quantum tunneling problem.
(see, for example, the review articles[8+-8]). So far, three  The situation considered in this paper is considerably differ-
types of optical barriers have been considered in the contednt The imaginary wave number in a polariton barrier layer

of the tunneling experiments. Historically, the earliest an eXdepends upon the frequency in a peculiar way, demonstrating
periment with evanescent modes was carried out by Bose ig singularity near the lower boundany; of the polariton

1927, where a prism with a beam incident at an angle large ap. This dependence does not have an analog in quantum-

trihearn[;?e_l_?]r;glszr?]fet?ctjila'r\‘/\tlzrsn3L;§IECU$%£]@3VE?SO§;§_ b""rhechanical systems. This leads to a different pattern of reso-
i y ' nance tunneling states.

ered resonant tunneling of electromagnetic waves in a super- Extending our svstem from two barriers to a periodic ar-
lattice composed of alternating layers with indices of 9 y P

refraction such that the incident angle was greater than theY of alterna_ltm_g transpa_\r_ent anq barrier layers, we obtain
angle of total internal reflection for one layer and smaller forPhoton bandsnside the initial forbidden bandThese bands
the other one. The majority of time-of-flight theoretical con- 1€ from the tunneling states and inherit many of their
siderations and experiments have been performed for an uRfoperties. In particular, we show that the bandwidths of
dersized waveguid§4,2,11 and photonic band gagd8,5). these bands are determined by the widths of the respective
All of the considered optical barriers were artificial struc-resonances. The band structure of two- and three-
tures. However, there exist natural optical barriers, which arélimensional photonic crystals made of materials with
well known, but were never considered in the context of lightfrequency-dependent dielectric permeability was numerically
tunneling. We are referring to “restrahlen” or “stop” pho- studied in Refs[12-14. Maradudin and McGurif12,13
tonic bands, which exist in many dielectrics and semiconduccomputed bands of two- and three-dimensional structures
tors in the region of polariton resonances. It is well knowncomposed of metal rodéspheres in the three-dimensional
that in the absence of attenuation, the transmission coeffcase with dielectric permeability of the forna=1—wj/w?,
cient of light with a frequency within the stop band decreasesvherew,, is the frequency of plasma excitations in the metal.
exponentially with an increase in the width of a slab throughZhang et al. [14] dealt with a photonic crystal built of a
which it propagates. Therefore, a simple slab of a dielectridielectric withe similar to that used in the present papsee
with polariton resonances can serve as a “naturally made’Eq. (1) below]. One of the interesting effects observed in
photonic barrier. Properties of this polariton barrier, how-both studies was flattening of the photonic bands below the
ever, might be considerably different from properties offrequencyw,, in the case considered in R¢L2], or below
other kinds of barriers because of the different dispersion lavw for Ref.[14]. We show analytically that this effect in the
of electromagnetic waves tunneling through the polaritorcase of the dielectric photonic crystal is a direct consequence
barrier. It is important, therefore, to consider the tunnelingof the singular behavior of the dielectric functiona. We
properties of polariton barriers. also discuss the influence of absorption upon tunneling prop-
In this paper we consider tunneling of electromagneticerties of the polariton barriers.
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II. RESONANCE TUNNELING cogK(a+b)]=cosh xa)cog kyb)
IN A THREE-LAYER SYSTEM
1/« Kk
We consider propagation of electromagnetic radiation of + P 70) sinh(ka)sin(kgh). (6)
0

frequencyw in a system that consists of two parallel absorb-
ing dielectric layers, each of thickness positioned along
the x axis and separated by a distarizeThe dielectric per-
meability of the dielectric material is given by

We assume here that the frequency of the wave falls into the
regionwt<w<w So that the wave numbér=i k is imagi-
nary and propagation of the wave through the dielectric lay-
ers is evanescent. Equati@¢h) describes optical tunneling
1) through a forbidden “band.” However, for a set of frequen-
(0+iy)2— w2’ cies such that

wherey is the attenuation and,. is the background dielec- cogK(a+b)]=0, @)
tric permeability. Both layers are considered optically iSotro-ia transmission coefficierf is equal to 1 and tunneling

pic, so that TE and TM waves are not coupled. This aHOWSthrough the system becomes resonant. Though (Bgis

us to neglect the vector nature of the electric field. We congjpilar to the respective equations of REF0] and of the

sider the case of normal incidence so that the electric field i'&uantum-mechanical tunneling problem, the different fre-
our system can be presented as quency dependence of the wave numkecauses different
behavior of the solutions to this equation.

ikgx —ikgx _

e 0. +re 0_, 0=x>—e0 In order to determine the number of resonance frequen-

a;e’™+be a=x>0 cies, it is convenient to rewrite E@7) as
E(x)={ aye'ko* @ 4p,e kox~a) a+b=x>a 1/k

0
azelkx-a-bp e-ikix-a=b) 251 ph=x>a+h 5(7— k_o tanh ka)=cot(kyb). (8)
telkox—2a=b), x>2a+b,
) If boundary frequencies, and wt satisfy the inequality

wherek,= w/c is the wave vector in vacuung, is the speed o — o <7T_C 9)
of light in vacuum, and, a;, by, a,, b,, a3, bz, andt are the L %™ p

complex amplitudes of the plane waves in each of the five o
different regions. The wave numbkeiin the dielectric layers the respective interval of wave numbers fowq/c to o _/c

is determined by the expression following from E)): can only accommodate less than one period ofkgok( In
this case Eq(8) has one solution if
2 2
K=k, \/Sm(‘”'” oL 3 koatan(kob)>2. (10
(0+iy)?— o}

If inequality (9) does not hold, the number of resonance fre-
Taking into account regular boundary conditions at eactfiuencies is equal to
of the boundaries between different materials, we obtain the
following expression for the complex transmission coeffi- N= (“’L_"’T)b+

cientt: TC
K2\
1=
ko 1 for two different values of the widths of the layersandb.
K 5 34 One can see that as the ratioaofo b increases, so does the
I TR~ P T 1] number of resonant peaks.
1-4—+65—-4—+ )e lka P

1 (12)

if inequality (10) is satisfied and it iN—1 otherwise. The

k\2 . — .
t= 16( —) g?katikob 2e?ikatikeb_pg2ika transmissiorT as a function of frequency is presented in Fig.

Ko

— gikob_ gaika+ikob 4
Ko Both plots in Fig. 1 show a similar pattern: the separation
between resonant peaks remains approximately constant
while the half-widthT" of peaks sharply decreases as the
(4) frequency approaches;. The resonant half-width can be
found by expanding the denominator of Ef) near the reso-
nance frequencw, up to the term quadratic in— w, . If a
resonance frequenay, is close to the lower boundary of the

gap w7, one can find fod’

T- - © pa 22 (B0)”

2 ’ ~
ki + —| sintf(ka)cof[K(a+b)] kod
0 K

0 0 kg
kK k2 K k!

In the case of a lossless dielectrig=£0) the expression for
the transmissivity of the systeffi=|t?| can be obtained as

w, 1/2
wl

exp{ —2(kga)
1+

where do=wr—w, and o, =e(w?—w2)/20r. Equation
whereK(a+b) is given by (12) describes an extremely sharp nonanalytical behavior of
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1 FIG. 2. Transmission in the presence of absorptiorafe2 and
b=8. The dashed line corresponds to an attenuation coefficient
v/ w+=0.005 and the solid line depicts the transmission ¥6&
0.8
=0.05.
§
7 0.6 Ill. PHOTONIC BANDS IN THE POLARITON
! FORBIDDEN GAP
Z 0.4 o
g In the case of a periodic array of the three-layer sand-
02 wiches considered in the preceding section, one has a set of
b ®) propagating bands instead of single resonance frequencies.
0 | In this situation, Eq(6) presents the dispersion equation of
0 ( 5 3 4 the propagating modes witk being the Bloch wave num-
) ber. The resonant tunneling frequencies discussed in the pre-
Normalized ~ Frequency ceding section are the solutions of the dispersion equation at

the center of the Brillouin bandK(a+b)=/2, where
K(a+b) changes between 0 and within the band. It is
clear, therefore, that each of the resonances gives rise to a
corresponding band. This conclusion is supported by the dis-
persion curves plotted in Fig. 3. One can see from this figure

the width of th the low-f bound that for each resonant frequeney, , wheren is the number
€ width of the resonance near the low-irequency boundarye 5 4iven mode, there is a distinct branch of the dispersion

of the gap. To take absorption into account, one can reDIaC@urve. It is interesting to note that branches corresponding to

FIG. 1. Transmission as a function @§/w;. The ratio of
w, /w7 is equal to 3 for both plotga) Values ofa andb are 2 and
8, respectively(b) a=2 andb=20. The polariton gap lies between
normalized frequencies 1 and 3.

the parametebw by the expression the resonant frequencies closedg have much smaller dis-
persion than branches that correspondvte= @, . One can
S ape= ﬁwT—w Y also notice that regular bands, which appear outside the po-
aps r "

lariton gap, also become less dispersive for frequencies near
w7. This observation agrees with the results reported in
If wr—w,<vy the width of the resonance becomes propor-Refs.[12-14 for two-dimensional systems. The advantage
tional to expfw, /y)*? and remains small fory<w, . of the one-dimensional model is that we can analytically
However, the width grows exponentially fast with an in- determine the cause for this behavior. Assuming that the
crease of the absorption rate and the height of the peak davidth of a band, centered ai,,, is much smaller than the
creases correspondingly. Therefore, the resonances near§squency itself, one can expand the right-hand side of the
w7 are the most vulnerable with respect to absorption. Onélispersion equation) with respect tow— w,, and obtain
can see this in Fig. 2, which shows that these resonancébe approximate dispersion equation as
disappear first when the absorption becomes larger. It also
follows from this analysis that the width of the resonance — o= (=1)"T () . Ko sint{ k(woy)a]
peaks close tav is determined solely by absorption. This @~ Bm “on ko « K @on
behavior of the resonances is specific to our particular model
and does not take place in the case of R&fl], where the
wave vector is finite for anyw in the forbidden band.

xco§K(a+b)]. (13

If one combines this equation and EG2) for the resonance

When o, approachesw, , the wave vectorx(w,) be- ! . .
comes smaller andl increases with frequency, reaching at Width I', the expression for the bandwidth.w, for bands
near the lower edge+ becomes

wp=w, a certain value, which depends upon all the param-

eters of the system. For these frequencies, absorption, when (6w)?
small enough, does not contribute significantly to the width Aw,~ @
of the maxima. W,
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prefactor —1)" in Eq. (13) shows that the branches have an
alternating sign of the dispersion: positive for the “even”

branches and negative for the “odd” ones. This feature is
clearly seen in Fig. 3.

IV. CONCLUSION

We consider a polariton stop barfckstrahlen regionas
an optical barrier for tunneling of electromagnetic waves.
We show that the peculiar frequency dependence of the tun-
neling penetration length of electromagnetic waves results in
tunneling properties that are qualitatively different from
those of other optical barriers. We carry out a detailed study
of the resonant tunneling of electromagnetic waves through a
three-layer sandwich, where a dispersionlessuum layer
was placed between two identical layers with dielectric per-
Iz T meability allowing for the polariton stop band. It was found
that the number of resonance frequencies depends upon the
050 frequency width of the stop band, — wt and the spatial
’ width b of the vacuum layer. This number increases with an
(a) increase ofw, — w1 and b. The latter dependence appears
0 paradoxical since it implies that no matter how far away
0.5 1 L5 2 25 3 tunneling layers are from each other, they are capable of
K(a+b) providing conditions for resonant tunneling. The situation
becomes clear if one recollects that we deal with the steady-
state situation, where the flux of energy in the system is fixed
by an external source. For a large system, a wave has to
travel a long distance between the layers before it reaches the
steady-state condition. This fact is crucial for an experimen-
tal observation of resonance tunneling since one has to have
a steady enough source of light and be able to maintain a
complete coherence of the wave while it travels between the
\ layers. Let us consider, for example, GaAs, for whish
=5.1x10" s7! and w, =5.5x 10" s7! [15]. The vacuum
wavelength in this case changes between 34 anquBv
when the frequency sweeps over the polariton gap. If one
_..-——/ makes the distanck between the layers equal to, say, 350
um (approximately ten wavelengthsthen the number of
observable resonances would be equal to 1 or 2 depending
upon the width of the dielectric layers. In order to observe a
greater number of the resonance one could use materials with
P —————————— ] wider polariton gaps, for example, MgO, whe&g=7.5
X108 s ! andw, =14x 10 s 1 [15]. In this case even for
b as small as 6Qum , four resonance peaks could be ob-

>
n
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n

Normalized Frequency
(3]

g
in
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W
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(3]

0.5 served. The actual number of resonance maxima also de-

(b) pends upon relaxation characteristics of the layers. Though

0 : : : : : : these characteristics can vary even for different samples of
0.5 1 L5 2 25 3 the same type of material, one can consigler0.02[16] as

K(a+b) a typical value and use it for quantitative estimates. It is seen

from Fig. 2 that the relaxation of this order of magnitude
FIG. 3. Bands arising in the polariton gap in the case of periodiccould reduce the number of observable resonances by at

arrangement of the considered systdm.a=2, b=8 and(b) a  most one maximum if the configuration of the system allows
=2,b=20. The polariton gap is shown by dashed lines. Dispersiorfor a maximum neawy. More specific conclusions regard-
curves in the forbidden gap correspond to the resonant peaks froiag the number of the expected resonances could be drawn
Fig. 1. from the results of the paper for each particular experimental

configuration.
This expression also holds for frequencies at the pass-band The width of the resonance peaks of the transmission co-
side of w1 and explains, therefore, the flattening of the pho-efficient was found to have a sharp nonanalytical frequency
ton dispersion curves neast observed in Refs[12—14. dependence at the lower boundary of the polariton gap
Both the bandwidthA w,, and the width of the resonandé  and to saturate at a certain finite value when approaching the
tend to a certain finite value whem approacheso, . The  upper boundaryw, . This results in different reactions to
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absorption for resonances occurring in the vicinitiesegf  their degrees of dispersiprare found to be determined by
and w . In the first situation even a small absorption com-the frequency width of the respective parent resonances. This
pletely determines the real width of the resonance and thesexplains flattening photonic bands neaf observed previ-
resonances are eliminated first with an increase of absormusly in numerical simulations of two-dimensional systems
tion. The resonances in the latter case survive a much stroihi4].
ger rate of absorption and for a small one they have a width
mainly determined by the properties of the barrier itself. ACKNOWLEDGMENTS
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