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Resonant tunneling of electromagnetic waves through polariton gaps

Lev I. Deych, D. Livdan, and A. A. Lisyansky
Department of Physics, Queens College, City University of New York, Flushing, New York 11367

~Received 25 November 1997!

We consider resonance tunneling of electromagnetic waves through an optical barrier formed by a stop band
between lower and upper polariton branches. We show that the tunneling through this kind of barrier is
qualitatively different from tunneling through other optical barriers as well as from the quantum-mechanical
tunneling through a rectangular barrier. We find that the width of the resonance maximum of the transmission
coefficient tends sharply to zero as the frequency approaches the lower boundary of the stop band. Resonance
transmission peaks give rise to new photonic bands inside the polariton stop band in a periodic array of the
barriers.@S1063-651X~98!13306-8#

PACS number~s!: 42.25.Bs, 05.40.1j, 71.36.1c, 63.50.1x
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I. INTRODUCTION

The effect of tunneling is well studied in the context
quantum mechanics~see, for example, Ref.@1#!. Recently,
tunneling of electromagnetic waves has attracted interest
ing to experiments with evanescent electromagnetic wa
@2–5#, which are a direct analog of wave functions of tu
neling quantum particles. These experiments provide an
portunity to experimentally study the time evolution of tu
neling wave packets, a subject of long-standing controve
~see, for example, the review articles in@6–8#!. So far, three
types of optical barriers have been considered in the con
of the tunneling experiments. Historically, the earliest an
periment with evanescent modes was carried out by Bos
1927, where a prism with a beam incident at an angle lar
than the angle of total internal reflection was used as a
rier @9#. The same idea was used by Yeh@10#, who consid-
ered resonant tunneling of electromagnetic waves in a su
lattice composed of alternating layers with indices
refraction such that the incident angle was greater than
angle of total internal reflection for one layer and smaller
the other one. The majority of time-of-flight theoretical co
siderations and experiments have been performed for an
dersized waveguide@4,2,11# and photonic band gaps@3,5#.
All of the considered optical barriers were artificial stru
tures. However, there exist natural optical barriers, which
well known, but were never considered in the context of lig
tunneling. We are referring to ‘‘restrahlen’’ or ‘‘stop’’ pho
tonic bands, which exist in many dielectrics and semicond
tors in the region of polariton resonances. It is well know
that in the absence of attenuation, the transmission co
cient of light with a frequency within the stop band decrea
exponentially with an increase in the width of a slab throu
which it propagates. Therefore, a simple slab of a dielec
with polariton resonances can serve as a ‘‘naturally mad
photonic barrier. Properties of this polariton barrier, ho
ever, might be considerably different from properties
other kinds of barriers because of the different dispersion
of electromagnetic waves tunneling through the polari
barrier. It is important, therefore, to consider the tunnel
properties of polariton barriers.

In this paper we consider tunneling of electromagne
571063-651X/98/57~6!/7254~5!/$15.00
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radiation through a polariton barrier in a steady-state mo
The point of interest in this situation is the resonance tunn
ing through a two-barrier system. Resonance tunneling
electromagnetic waves in a superlattice structure was pr
ously discussed in Ref.@10#. A tunneling effect in Ref.@10#
arose when the angle of incidence for electromagnetic wa
exceeded the angle of total internal reflection for one of
layers constituting the superlattice. The frequency dep
dence of the imaginary wave number in this case coinci
with that of the square-barrier quantum tunneling proble
The situation considered in this paper is considerably diff
ent. The imaginary wave number in a polariton barrier lay
depends upon the frequency in a peculiar way, demonstra
a singularity near the lower boundaryvT of the polariton
gap. This dependence does not have an analog in quan
mechanical systems. This leads to a different pattern of re
nance tunneling states.

Extending our system from two barriers to a periodic
ray of alternating transparent and barrier layers, we ob
photon bandsinside the initial forbidden band. These bands
arise from the tunneling states and inherit many of th
properties. In particular, we show that the bandwidths
these bands are determined by the widths of the respec
resonances. The band structure of two- and thr
dimensional photonic crystals made of materials w
frequency-dependent dielectric permeability was numeric
studied in Refs.@12–14#. Maradudin and McGurn@12,13#
computed bands of two- and three-dimensional structu
composed of metal rods~spheres in the three-dimension
case! with dielectric permeability of the form«512vp

2/v2,
wherevp is the frequency of plasma excitations in the met
Zhang et al. @14# dealt with a photonic crystal built of a
dielectric with« similar to that used in the present paper@see
Eq. ~1! below#. One of the interesting effects observed
both studies was flattening of the photonic bands below
frequencyvp , in the case considered in Ref.@12#, or below
vT for Ref. @14#. We show analytically that this effect in th
case of the dielectric photonic crystal is a direct conseque
of the singular behavior of the dielectric function atvT . We
also discuss the influence of absorption upon tunneling pr
erties of the polariton barriers.
7254 © 1998 The American Physical Society
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II. RESONANCE TUNNELING
IN A THREE-LAYER SYSTEM

We consider propagation of electromagnetic radiation
frequencyv in a system that consists of two parallel abso
ing dielectric layers, each of thicknessa, positioned along
the x axis and separated by a distanceb. The dielectric per-
meability of the dielectric material is given by

«~v!5«`

~v1 ig!22vL
2

~v1 ig!22vT
2

, ~1!

whereg is the attenuation and«` is the background dielec
tric permeability. Both layers are considered optically isot
pic, so that TE and TM waves are not coupled. This allo
us to neglect the vector nature of the electric field. We c
sider the case of normal incidence so that the electric fiel
our system can be presented as

E~x!55
eik0x1re2 ik0x, 0>x.2`

a1eikx1b1e2 ikx, a>x.0

a2eik0~x2a!1b2e2 ik0~x2a!, a1b>x.a

a3eik~x2a2b!1b3e2 ik~x2a2b!, 2a1b>x.a1b

teik0~x22a2b!, x.2a1b,
~2!

wherek05v/c is the wave vector in vacuum,c is the speed
of light in vacuum, andr , a1, b1, a2, b2, a3, b3, andt are the
complex amplitudes of the plane waves in each of the
different regions. The wave numberk in the dielectric layers
is determined by the expression following from Eq.~1!:

k5k0A«`

~v1 ig!22vL
2

~v1 ig!22vT
2
. ~3!

Taking into account regular boundary conditions at ea
of the boundaries between different materials, we obtain
following expression for the complex transmission coe
cient t:

t516S k

k0
D 2

e2ika1 ik0bS 12
k2

k0
2D 22F2e2ika1 ik0b22e2ika

2eik0b2e4ika1 ik0b1S 124
k

k0
16

k2

k0
2

24
k3

k0
3

1
k4

k0
4D e4ika

1114
k

k0
16

k2

k0
2

14
k3

k0
3

1
k4

k0
4G21

. ~4!

In the case of a lossless dielectric (g50) the expression for
the transmissivity of the systemT5ut2u can be obtained as

T5
1

11S k

k0
1

k0

k D 2

sinh2~ka!cos2@K~a1b!#

, ~5!

whereK(a1b) is given by
f
-

-
s
-

in

e

h
e

-

cos@K~a1b!#5cosh~ka!cos~k0b!

1
1

2S k

k0
2

k0

k D sinh~ka!sin~k0b!. ~6!

We assume here that the frequency of the wave falls into
regionvT,v,vL so that the wave numberk5 ik is imagi-
nary and propagation of the wave through the dielectric l
ers is evanescent. Equation~5! describes optical tunneling
through a forbidden ‘‘band.’’ However, for a set of freque
cies such that

cos@K~a1b!#50, ~7!

the transmission coefficientT is equal to 1 and tunneling
through the system becomes resonant. Though Eq.~6! is
similar to the respective equations of Ref.@10# and of the
quantum-mechanical tunneling problem, the different f
quency dependence of the wave numberk causes different
behavior of the solutions to this equation.

In order to determine the number of resonance frequ
cies, it is convenient to rewrite Eq.~7! as

1

2S k0

k
2

k

k0
D tanh~ka!5cot~k0b!. ~8!

If boundary frequenciesvL andvT satisfy the inequality

vL2vT,
pc

b
, ~9!

the respective interval of wave numbers formvT /c to vL /c
can only accommodate less than one period of cot(k0b). In
this case Eq.~8! has one solution if

k0atan~k0b!.2. ~10!

If inequality ~9! does not hold, the number of resonance f
quencies is equal to

N5
~vL2vT!b

pc
11 ~11!

if inequality ~10! is satisfied and it isN21 otherwise. The
transmissionT as a function of frequency is presented in F
1 for two different values of the widths of the layersa andb.
One can see that as the ratio ofa to b increases, so does th
number of resonant peaks.

Both plots in Fig. 1 show a similar pattern: the separat
between resonant peaks remains approximately cons
while the half-width G of peaks sharply decreases as t
frequency approachesvT . The resonant half-widthG can be
found by expanding the denominator of Eq.~5! near the reso-
nance frequencyv r up to the term quadratic inv2v r . If a
resonance frequencyv r is close to the lower boundary of th
gapvT , one can find forG

G'
2A2

k0a

~dv!2

v*
expF22~k0a!S v*

dv D 1/2G , ~12!

where dv5vT2v r and v* 5e(vL
22vT

2)/2vT . Equation
~12! describes an extremely sharp nonanalytical behavio
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7256 57LEV I. DEYCH, D. LIVDAN, AND A. A. LISYANSKY
the width of the resonance near the low-frequency bound
of the gap. To take absorption into account, one can rep
the parameterdv by the expression

dvabs5A~vT2v r !
21g2.

If vT2v r,g the width of the resonance becomes prop
tional to exp(2v* /g)1/2 and remains small forg,v* .
However, the width grows exponentially fast with an i
crease of the absorption rate and the height of the peak
creases correspondingly. Therefore, the resonances ne
vT are the most vulnerable with respect to absorption. O
can see this in Fig. 2, which shows that these resona
disappear first when the absorption becomes larger. It
follows from this analysis that the width of the resonan
peaks close tovT is determined solely by absorption. Th
behavior of the resonances is specific to our particular mo
and does not take place in the case of Ref.@10#, where the
wave vector is finite for anyv in the forbidden band.

When v r approachesvL , the wave vectork(v r) be-
comes smaller andG increases with frequency, reaching
v0.vL a certain value, which depends upon all the para
eters of the system. For these frequencies, absorption, w
small enough, does not contribute significantly to the wid
of the maxima.

FIG. 1. Transmission as a function ofv/vT . The ratio of
vL /vT is equal to 3 for both plots.~a! Values ofa andb are 2 and
8, respectively.~b! a52 andb520. The polariton gap lies betwee
normalized frequencies 1 and 3.
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III. PHOTONIC BANDS IN THE POLARITON
FORBIDDEN GAP

In the case of a periodic array of the three-layer sa
wiches considered in the preceding section, one has a s
propagating bands instead of single resonance frequen
In this situation, Eq.~6! presents the dispersion equation
the propagating modes withK being the Bloch wave num
ber. The resonant tunneling frequencies discussed in the
ceding section are the solutions of the dispersion equatio
the center of the Brillouin band,K(a1b)5p/2, where
K(a1b) changes between 0 andp within the band. It is
clear, therefore, that each of the resonances gives rise
corresponding band. This conclusion is supported by the
persion curves plotted in Fig. 3. One can see from this fig
that for each resonant frequencyv rn , wheren is the number
of a given mode, there is a distinct branch of the dispers
curve. It is interesting to note that branches correspondin
the resonant frequencies close tovT have much smaller dis
persion than branches that correspond tov r.vL . One can
also notice that regular bands, which appear outside the
lariton gap, also become less dispersive for frequencies
vT . This observation agrees with the results reported
Refs. @12–14# for two-dimensional systems. The advanta
of the one-dimensional model is that we can analytica
determine the cause for this behavior. Assuming that
width of a band, centered atv rn , is much smaller than the
frequency itself, one can expand the right-hand side of
dispersion equation~6! with respect tov2v rn and obtain
the approximate dispersion equation as

v2v rn5~21!nG~v0n!S k

k0
1

k0

k D sinh@k~v0n!a#

3cos@K~a1b!#. ~13!

If one combines this equation and Eq.~12! for the resonance
width G, the expression for the bandwidth,Dvn for bands
near the lower edgevT becomes

Dvn;
~dv!2

v*
.

FIG. 2. Transmission in the presence of absorption fora52 and
b58. The dashed line corresponds to an attenuation coeffic
g/vT50.005 and the solid line depicts the transmission forg/vT

50.05.
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57 7257RESONANT TUNNELING OF ELECTROMAGNETIC WAVES . . .
This expression also holds for frequencies at the pass-b
side ofvT and explains, therefore, the flattening of the ph
ton dispersion curves nearvT observed in Refs.@12–14#.
Both the bandwidthDvn and the width of the resonanceG
tend to a certain finite value whenv approachesvL . The

FIG. 3. Bands arising in the polariton gap in the case of perio
arrangement of the considered system.~a! a52, b58 and ~b! a
52, b520. The polariton gap is shown by dashed lines. Dispers
curves in the forbidden gap correspond to the resonant peaks
Fig. 1.
nd
-

prefactor (21)n in Eq. ~13! shows that the branches have
alternating sign of the dispersion: positive for the ‘‘even
branches and negative for the ‘‘odd’’ ones. This feature
clearly seen in Fig. 3.

IV. CONCLUSION

We consider a polariton stop band~restrahlen region! as
an optical barrier for tunneling of electromagnetic wave
We show that the peculiar frequency dependence of the
neling penetration length of electromagnetic waves result
tunneling properties that are qualitatively different fro
those of other optical barriers. We carry out a detailed stu
of the resonant tunneling of electromagnetic waves throug
three-layer sandwich, where a dispersionless~vacuum! layer
was placed between two identical layers with dielectric p
meability allowing for the polariton stop band. It was foun
that the number of resonance frequencies depends upon
frequency width of the stop bandvL2vT and the spatial
width b of the vacuum layer. This number increases with
increase ofvL2vT and b. The latter dependence appea
paradoxical since it implies that no matter how far aw
tunneling layers are from each other, they are capable
providing conditions for resonant tunneling. The situati
becomes clear if one recollects that we deal with the stea
state situation, where the flux of energy in the system is fix
by an external source. For a large system, a wave ha
travel a long distance between the layers before it reaches
steady-state condition. This fact is crucial for an experim
tal observation of resonance tunneling since one has to h
a steady enough source of light and be able to mainta
complete coherence of the wave while it travels between
layers. Let us consider, for example, GaAs, for whichvT
55.131013 s21 and vL55.531013 s21 @15#. The vacuum
wavelength in this case changes between 34 and 37mm
when the frequency sweeps over the polariton gap. If o
makes the distanceb between the layers equal to, say, 3
mm ~approximately ten wavelengths!, then the number of
observable resonances would be equal to 1 or 2 depen
upon the width of the dielectric layers. In order to observ
greater number of the resonance one could use materials
wider polariton gaps, for example, MgO, wherevT57.5
31013 s21 andvL51431013 s21 @15#. In this case even for
b as small as 60mm , four resonance peaks could be o
served. The actual number of resonance maxima also
pends upon relaxation characteristics of the layers. Tho
these characteristics can vary even for different sample
the same type of material, one can considerg50.02 @16# as
a typical value and use it for quantitative estimates. It is s
from Fig. 2 that the relaxation of this order of magnitud
could reduce the number of observable resonances b
most one maximum if the configuration of the system allo
for a maximum nearvT . More specific conclusions regard
ing the number of the expected resonances could be dr
from the results of the paper for each particular experime
configuration.

The width of the resonance peaks of the transmission
efficient was found to have a sharp nonanalytical freque
dependence at the lower boundary of the polariton gapvT
and to saturate at a certain finite value when approaching
upper boundaryvL . This results in different reactions t
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absorption for resonances occurring in the vicinities ofvT
and vL . In the first situation even a small absorption co
pletely determines the real width of the resonance and th
resonances are eliminated first with an increase of abs
tion. The resonances in the latter case survive a much st
ger rate of absorption and for a small one they have a w
mainly determined by the properties of the barrier itself.

We also consider the extension of our system to a perio
array of the sandwiches. We show that each of the re
nances of the original system gives rise to a band, with
original resonance frequency at the center of the respec
band. The bandwidths of the bands~and correspondingly
a-

tt

pl
i,

ys
-
se
p-
n-

th

ic
o-
e
ve

their degrees of dispersion! are found to be determined b
the frequency width of the respective parent resonances.
explains flattening photonic bands nearvT observed previ-
ously in numerical simulations of two-dimensional syste
@14#.
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